Constructive Urysohn's Universal Metric Space
نویسندگان
چکیده
منابع مشابه
Constructive Urysohn Universal Metric Space
We construct the Urysohn metric space in constructive setting without choice principles. The Urysohn space is a complete separable metric space which contains an isometric copy of every separable metric space, and any isometric embedding into it from a finite subspace of a separable metric space extends to the whole domain.
متن کاملThe Urysohn universal metric space and hyperconvexity
In this paper we prove that Urysohn univeral space is hyperconvex. We also examine the Gromov hyperbolicity and hyperconvexity of metric spaces. Using fourpoint property, we give a proof of the fact that hyperconvex hull of a δ-Gromov hyperbolic space is also δ-Gromov hyperbolic.
متن کاملRandom Metric Spaces and the Universal Urysohn Space.2
We introduce a model of the set of all Polish (=separable complete metric) spaces which is the cone R of distance matrices, and consider the geometrical and probabilistic problems connected with this object. We prove that the generic Polish space in the sense of this model is the so called universal Urysohn space which was defined by P.S.Urysohn in the 1920-th. Then we consider the metric space...
متن کاملExtension and reconstruction theorems for the Urysohn universal metric space
We prove some extension theorems involving uniformly continuous maps of the universal Urysohn space. As an application, we prove reconstruction theorems for certain groups of autohomeomorphisms of this space and of its open subsets.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Notes in Theoretical Computer Science
سال: 2008
ISSN: 1571-0661
DOI: 10.1016/j.entcs.2008.12.015